1.A.1.b - Petroleum Refining

Last updated on 29 Aug 2019 09:29 (cf. Authors)

Short description

Raffinerie2.png

Source catagory Petroleum Refining (1.A.1.b) comprises both refinery heating plants and electricity and heat production of refinery power plants.

NFR-Code Name of Category Method AD EF Key Category
1.A.1.b Petroleum Refining T2 NS CS L & T: SOx, | T: Cd

Method

Refinery processes are very complex. Therefore the development of an adequate calculation method is demanding. Since plant specific data are not complete and partly contradictory, a plant specific reporting is not possible. Data is used to determine fuel specific emission factors as general basis of the calculation model. However, in reality, a large number of several fuels and waste fuels with different fuel characteristics is used for combustion processes. Insofar the calculation model is limited.
Only some refinery power plants use wet desulfurisation in order to decrease sulfur emissions. Usually the fuels mix ensures the compliance with the limit values.

Activity data

Fuel inputs for electricity production in refinery power stations are included in Energy Balance line 12 ("Industrial thermal power stations"). Energy Balance line 38 shows energy consumption (for heat production) of refineries. [1]

Fuel inputs for heat production in refinery power plants and for bottom heating in refinery processes, are derived from these figures.
Activity rates for refineries for fuel inputs for electricity and heat production in petroleum refining are determined by combining the national statistics of the Federal statistical Office (DESTATIS) and the Federal Office of Economics and Export Control (BAFA).

Energy inputs in facilities for used-oil processing are reported under 1.A.1.c - Other transformation sector.

Emission factors

The emission factors for refinery power plants have been taken from the research project "Determination and evaluation of emission factors for combustion systems in Germany for the years 1995, 2000 and 2010" [2]. A detailed description of the procedure is presented in Chapter: 1.A.1.a - Public Electricity And Heat Production.
Emission factors are available for different fuel types and combustion technologies. The distinction between refinery power plants and bottom heating in refinery processes is necessary since bottom heating systems have considerably higher specific emissions.
A running project which has to evaluate data from emission declarations for the years 2004, 2008, 2012 and 2016 for all refineries will provide refinery gas emission factor data for Submission 2020. The first results show the following range:

SO2: 4.79 - 16.09 kg/TJ
CO: 1.02 - 1.85 kg/TJ
NOX: 36.71 - 45.60 kg/TJ
NMVOC: 0.843 - 1.170 kg/TJ
TSP: 0.24 - 0.37 kg/TJ
Before the new emission factors can be used, it has to be checked which data are representative. Further quality checks are necessary in order to reproduce the trend correctly.

Trend discussion for Key Sources

The following diagram gives an overview of the fuel consumption in the refinery sector.

Since 1990, fuel consumption has shown a slightly increasing trend overall. While some relevant installations have been decommissioned since 1990 - especially in the territory of the former GDR - production increased nevertheless. And while installation efficiencies were improved, increased production of lighter petroleum products and intensified hydrosulphurisation, which led to increases in specific fuel consumptions. Annual fluctuations of all fuel types can be explained as the result of differences in production quantities. The maximum production of petroleum products to date, totalling 123.6 million t, occurred in 2005, as a result of a shortfall in capacity in the USA, which led to an increase in imports. Thereafter, production decreased by reducing excess capacities like everywhere in Europe.
The increasing use of natural gas in recent years led to decreasing emissions of all emissions (except NOx ).

Recalculations

Recalculations were necessary for the latest reference year (2016) due to the availability of the National Energy Balance. Germany has a federal structure which causes a time lack of the National Energy Balance. Therefore, recalculations are always necessary.

For pollutant-specific information on recalculated emission estimates for Base Year and 2016, please see the pollutant specific recalculation tables following chapter 8.1 - Recalculations.

Planned improvements

It is planned to revise emission factors for all pollutants on the basis of the above mentioned project.


Bibliography
1. AGEB, 2017: Arbeitsgemeinschaft Energiebilanzen (Hrsg.): Energiebilanz für die Bundesrepublik Deutschland; URL: http://www.ag-energiebilanzen.de/7-1-Energy-Balance-2000-to-2015.html
2. Rentz et al., 2002: Rentz, O. ; Karl, U. ; Peter, H.: Ermittlung und Evaluierung von Emissionsfaktoren für Feuerungsanlagen in Deutschland für die Jahre 1995, 2000 und 2010: Forschungsbericht 299 43 142; Forschungsvorhaben im Auftrag des Umweltbundesamt; Endbericht; Karlsruhe: Deutsch-Französisches Inst. f. Umweltforschung, Univ. (TH); 2002
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License

SSL configuration warning

This site has been configured to use only SSL (HTTPS) secure connection. SSL is available only for Pro+ premium accounts.

If you are the master administrator of this site, please either upgrade your account to enable secure access. You can also disable SSL access in the Site Manager for this site.